
Scalability & Security Architecture for Internet2
Applications

T.Mahesh, Prof. P.Pradeep, R.SatyaTeja

Department CSE, Vivekananda Institute of Technology and Science, Karimnagar, AP, India

Abstract-The last two decades have seen a tremendous change in
the field of Internet services. The main reason for this sea
change is the impact of Information and Communication
Technology tools and services which have influenced the
Internet services. For the last decade, each new technological
advance has predicted the demise of brick and indeed we have
seen many giants fall. Through various technologies like cloud
computing, Web 3.0, grid computing, and applications will have
to adopt novel software engineering techniques for development
and deployment. Scalability, Interoperability, Availability
(tolerance to failure), Reliability, Security (confidentiality,
integrity, authentication, authorization), and Anonymity are
some of the important quality and usability features that will
determine the success of new Internet applications. Internet2
actively engages our community in the development of
important new technologies including middleware, security,
network research and performance measurement capabilities
which are critical to the forward progress Internet applications.
This paper captures the most recent and innovative architecture
and mechanism that will enable to successfully build the
Internet2.

Keywords: Scalability and Security aware Software Development
Life Cycle, Cloud Computing, middleware, web 3.0, Internet2

I. INTRODUCTION

 With ever-increasing demands on capacity, quality of
service, speed, and reliability, current internet systems are
under strain and under review. Web and Smart phones have
changed the rules of the innovation game – innovation in
technology has moved from technology companies to the
consumer space. Innovation in content delivery, multimedia
services, social networking services, Web 2.0, Web 3.0,
virtual reality applications, and context-based services are
creating both opportunities and challenges for business and
academic researchers. Internet2 applications and services will
need to answer all these questions and many more..
Moreover, the applications will be available to novice
inexperienced users and expert hackers as well. The success
of these Internet2 applications and services will depend on
how are they created, deployed, and maintained. For a long
time, software engineering dealt with only functional
requirement. Different techniques have been proposed in last
four decades to define software development as a mainstream
engineering practice. Unified modeling language (UML) [1]
is the most significant contribution in this attempt. UML
provides various tools to elicit functional requirements and
design. These tools help reduce error at the early stage of the
application development. However, UML does not include
nonfunctional requirements like security, scalability,
reliability, interoperability, and availability (tolerance to
failure), which are difficult to quantify and hard to define in

measurable terms; therefore, they remained nonfunctional
requirements and left to the programmer to meet these
complex challenges based on their knowledge and judgment.
Also, quite often these nonfunctional requirements were
addressed outside of the application domain. When the
application fails to scale, additional hardware are added to
address the performance issue. Security was also addressed
outside of the application through perimeter security. For
Internet2 applications these nonfunctional requirements must
be analyzed at the early stage of the software development life
cycle (SDLC) and included inside the application and treated
as functional requirements. Some of the recent works [2, 3, 4,
5, 6] recommend inclusion of nonfunctional requirements into
mainstream software engineering.
 Cloud computing is a paradigm of service deployment
that is gaining lot of interest and momentum. Cloud
Computing helps users to rent computing resources during
deployment of the service against owning it in pay as you go
model. Cloud helps converting capital expenditure into
operational expenditure; also, cloud computing can be used to
channelize unused computing resource in the enterprise
reducing the power requirement in the data-center. An
application may run on any platform or any virtualized
infrastructure through infrastructure as a service (IaaS),
platform as a service (PaaS) and software as a service (SaaS)
[7]. Companies like Google, Amazon, Yahoo, Facebook
etcetera are using cloud in some form or the other – they are
also offering cloud infrastructure for public use. Many users
have started using cloud – be it a business application or a
portal. Cloud-ready services will be exposed to adversaries in
un-trusted networks and will exchange data over these
networks. Also, they will migrate from platform to platform
at different point in time based on the economics of the
resource. The question that need to be answered in Internet2 –
how to ensure that the application is secure and scales up or
down as and when necessary; how can this be made
infrastructure agnostic and platform agnostic and provide the
same level of security, scalability, and availability as in a
private environment. All these need a paradigm shift;
scalability and security can no longer remain outside of the
SDLC. The standard UML way of designing an application
will not be sufficient for Internet2 service creation; scalability
and security has to be mainstream and part of the application
development life cycle.
 This position paper suggests how the Internet2 will look
like in the future and what are the measures need to be looked
into so that an application can remain secure and scale with a
guaranteed quality of service (QoS). This paper also
introduces tools that address the non-functional requirements.
“Phoenix” for Scalability and Availability; and “Suraksha”
for Security.

T.Mahesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1852-1855

1852

II. INTERNET2 APPLICATIONS

 In our opinion, Internet2 will be a combination of
• Multi-user-agent
• Multi-service
• Multi-access
• Multi-provider
• Multi-protocol networks
• Web 2.0 and Web 3.0
• IPv6 with IPsec
• Support mobility at vehicular state
• Intelligent and programmable networks
• Definable service quality
• Definable security level
• On demand scalability
• API in the network to obtain context information (spatial,
environmental, and temporal attributes)
• API in the network to enforce QoS and security

 Figure 1: Internet2 Architecture

In our thought, Internet2 deployment architecture will be
similar to Figure 1. There will be a cloud vendor that offers
services to the end user. These services can be peer-to-peer
content delivery, social networking services,
healthcare/telemedicine services, web-based communities,
Web 2.0, Web 3.0, services with application mash-ups,
vehicular network applications, context-aware services, you
name it. It is possible that the cloud vendor itself offers the
SaaS, PaaS, and IaaS. Like the application, the cloud vendor
will be agnostic to the content, software, platform, and the
infrastructure. The cloud vendor will offer the best possible
deployment environment at best possible price. The cloud
vendor will ensure security, scalability, interoperability, and
availability. The cloud vendor will ensure quality of service
through service level agreement (SLA).

III. SCALABILITY AND AVAILABILITY IN INTERNET2
Scalability in Internet2 applications needs to be dynamic –
these applications need to react to external events such as
increased load, augmented reliability etc. In Internet2, there

will be no association between the service and the underlying
platform and infrastructure. The cloud user / customer may
like to use some resource somewhere in the world that offers
the best price performance advantage – the model
telecommunication vendors used for long. Therefore, the
cloud vendor will create a virtual execution environment for
the service that can leverage this advantage. The scalability in
such environment will be managed at two levels. These are
platform level (PaaS) and the software level. For scalability
the application must be able to leverage,

• Tightly coupled parallelism – here the application need
to use instruction-level parallelism at the application
layer that uses multi-threading techniques and uses
technologies like message passing interface (MPI) [8]
or OpenMP [9].

• Loosely coupled parallelism – here the application need
to use task-level parallelism at the platform level by
using intelligent middleware such as MapReduce [10]
and Apache Hadoop [11].

• Cloud level parallelism – A flavor of loosely coupled
parallelism paradigm that allows creating software as a
service. Platforms such as GridGain [12] can be used
to develop and run applications on private or public
clouds.

 In this paper we try to observe a variety of approaches to
design scalable Internet2 applications. In this context we
propose a system called Phoenix [13], an intelligent cloud
middleware that can react to the dynamic needs of Internet2
based applications. This system can help applications with
varied load to scale up or scale down by provisioning virtual
environment on-demand. It is a loosely coupled system to
hide the complexities of scalability from the applications.
 Phoenix can manage infrastructures such as Hadoop and
GridGain. While these infrastructures will ensure availability
and provide fault tolerance to underlying hardware/network
failure, it can rely on Phoenix to gurantee the quality of
service.
 Phoenix provides centralized management of VM
workloads and distributed infrastructure. It supports various
VM placement policies and allows dynamic partition and
isolation of clusters. Phoenix supports heterogeneous
execution environments with multiple, even conflicting,
software requirements on the same shared infrastructure and
provides full control of the lifecycle of virtualized services
management. Phoenix has an open and flexible architecture
that allows integrating other open source software. Some of
the cardinal features of Phoenix are Virtualization
management, Image management, Network management,
Fault tolerance, Access control and scalability.
 Biologicl and Lifesciences problems are NP-hard; these
applications need tremendous coputing power to process
terabytes to petabytes of data. As a test-bed we have built
Bio- Cloud – a next generation cloud application on top of
Phoenix that provides a complete and exhaustive downstream
bioinformatics and biostatistics analysis of Next Generation
Sequencing data. These applications will be used by
biologists, research labs, and small & medium enterprises
(SME) in biotechnology.

T.Mahesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1852-1855

1853

IV. SECURITY IN INTERNET2
Security in Internet2 needs to answer few specific questions
like,
1. How much trust do you have on virtualized environment or
the hypervisors in the cloud as against your own physical
hardware?
2. How much trust do you have on cloud vendor versus your
own infrastructure?
3. How do you address regulatory and compliance
requirement in an environment when your application might
be running on an infrastructure in a foreign country?
To answer these, security in the Internet2 will need following
attributes,

• Confidentiality
• Integrity
• Authentication
• Authorization
• Anonymity

 Confidentiality will ensure that the data is encrypted using
some of the accepted cryptographic algorithms of public key
cryptography like RSA, Elliptic curve; symmetric
cryptographic algorithms like AES or 3DES; key exchange
algorithms like Diffie-Hellman; and, digital signatures;. Data
can be a message, a piece of data, XML, or even HTTP data.
For real-time data, even symmetric stream ciphering
algorithms like RC4 can be used. Algorithms like MD5 or
SHA will also be used to create digital signature for integrity.
 Authentication and Authorization (A&A) will be a major
challenge in Internet2. A&A will be at two major levels – at
the user level within the network and at the application level
at the computing platform end. In the Internet2 the user will
seamlessly roam between networks. These networks can be a
wired netwok or wireless network – WiFi or 3G or even
WiMAX networks. Along with mobile IP, the network will
provide seamless A&A, handoff, and roaming between
homogenous and heterogenos networks. To ensure seamless
roaming, the network must offer Intradomain & Interdomain
A&A and security through 3GPP standards like: • Security
Architecture and Authentication and Key Agreement (AKA)
[3GPP TS 33.102]
• Network Domain Security (NDS) [3GPP TS 33.310]
• Access Security for SIP-based Services [3GPP TS 33.203]
• Generic Authentication Architecture [3GPP TS 33.220]
• Access Security for HTTP-based Services [3GPP TS
33.222]
 At the application level the security will cover elements
like Availability, Anonymity, and Object security. Part of the
availability will be ensured by fault-tolerance as described in
Section 3; rest will be through measures against denial of
service (DoS) attack. Countermeasures against DoS attack
will be handled at the network level through isolation of
subnetworks. As we described, in Internet2 objects and
software applications will be agnostic to the underlying
platform. The deployment vendor must guarantee anonymity
so that the data and content is confidential and anonymous. In
the virtual environment any platform or infrastructure might
be compromised. Therefore, the application must be security

aware and need to ensure that security is ensured at various
levels, that include,
• Service to Platform security – this category will represent
the set of threats in which a compromised services (or a
malicious service exploits security weaknesses of a platform
or launches attack against a platform.
• Service to Service security – this category represents the set
of threats in which one service exploit security weaknesses of
other services or launch attacks against other applications or
objects.
• Platform to Service security – this category represents the
set of threats in which compromise platforms attack services.
 In this context we propose a system called Suraksha [14], an
Open Source tool that provides developers with powerful and
elegant technology to design and develop security aware
cloud applications.

V. SERVICE QUALITY AND CHARGING THE USER

UML or other standard techniques in application development
does not pay much attention towards journaling. Journaling is
necessary to record usage history. These usage records are
used at a later time to charge and bill a consumer. In addition,
Journaling is a critical part of any secured and reliable
system; it helps a system to recover from failure through
either roll-back or roll-forward. Journaling is also used for
forensic purposes to recreate the scene of a security attack. In
our opinion, billing and charging in Internet2 will be similar
to billing and charging in the Telecom space; however, the
spatial (distance between caller and called) attribute of
telecom will not play any role in I Internet2. In I Internet2,
billing will be a combination of fixed charges, recurring
charges, and charges based on usage. In I Internet2,
additionally, charging will depend on the quality of service
(QoS) and quality of experience (QoE) attribute driven by
service level agreement (SLA). SLA will cover both S&S
requirements of security & scalability. The SaaS and inter-
service provider billing will be complex in Internet2. Inter-
service billing will be based on slabs and bill & keep model.
Similar models will be applicable at the PaaS and IaaS level.
However, SaaS billing will depend not only on the content
but also on the intent. Monetization in Internet2 will be driven
by value and not on size of the software. Many services in the
Internet2 will monetize from deriving the intent, emotions,
and opinion of the consumer. There are a few open-source
tools that can be enhanced by a vendor to manage QoE and
charging of services at the platform level –these are
OpenNebula, Haizea, and Phoenix.
• OpenNebula [15] is a Virtual Infrastructure Manager that
orchestrates storage, network and virtualization technologies
to enable the dynamic placement of multi-tier services
(groups of interconnected virtual machines) on distributed
infrastructures, combining both data center resources and
remote cloud resources, according to allocation policies.
• Haizea [16] is an open source virtual machine-based lease
management architecture. In combination with the
OpenNebula virtual infrastructure manager it can be used to
manage a Xen, KVM, VMWare, etc. clusters, allowing one to

T.Mahesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1852-1855

1854

deploy different types of leases that are instantiated as virtual
machines (VMs).
• Phoenix [13] is an open source cloud middleware used to
build, manage and administer on-premise or hybrid cloud.
Phoenix is an extension of OpenNebula and is built to be
hypervisor agnostic and can leverage schedulers such as
Haizea for intelligent lease management of the virtual
infrastructure. Phoenix has built in robust Fine Grained
Security and Group Management, Storage Provisioning,
transaction manager and Intelligent Cloud scale for varied
application loads such as high performance computing (HPC)
or business application to leverage underlying cloud
infrastructure.
 To ensure security and service quality in NGI, a vendor
has to go beyond its own domain of control. This becomes
even more complex when the service provider does not own
some of these service infrastructures. Therefore, we
recommend that a cloud vendor uses ITU-T Recommendation
G.1000 [17] for QoS. An SLA is a contract between a
customer and the vendor to define QoS – to ensure quality of
experience (QoE); it can be implemented in the NGI using
definitions and rules [18]. In case the terms of the SLA
contract are violated [19] the vendor must ensure recovery
and corrective actions.

VI. CONCLUSION
 Internet2 have made significant irreversible changes in the
way people use Internet and create services developing and
testing new technologies, such as IPv6, multicasting and
quality of service (QoS) that will enable revolutionary
Internet applications. However, these applications require
performance not possible on today's Internet. More than a
faster Web or email, these new technologies will enable
completely new applications such as digital libraries, virtual
laboratories, distance-independent learning and tele-
immersion. A primary goal of Internet2 is to ensure the
transfer of new network technology and applications to the
broader education and networking community applications,
services, and infrastructure in the past were designed to meet
the need in deterministic terms. Unlike the static
environments for services and applications deployment, the
deployment scenario for Internet2 will be dynamic – user

expectation, user volume, and demand on infrastructure will
be dynamic. Also, Internet2 will be available to every
individual starting from common users to hackers. This will
make the availability, anonymity, and security challenges
much more complex. In this position paper, we presented
these challenges and proposed techniques to mitigate them.

REFERENCES
[1] Rumbaugh J, Jacobson I, Booch G, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1999.
[2] Asoke K Talukder and Manish Chaitanya, Architecting Secure Software
Systems, Auerbach Publications, 2008.
[3] Guttorm Sindre and Andreas L Opdahl, “Capturing Security
Requirements by Misuse Cases,” in Proc. 14th Norwegian Informatics
Conference (NIK'2001),Troms, Norway, Nov. 2001.
[4] G. Sindre and A.L. Opdahl, “Eliciting Security Requirements by Misuse
Cases,” in Proc. 37th Conf. Techniques of Object-Oriented Languages and
Systems, TOOLS Pacific 2000, 2000, pp. 120–131.
[5] G. Sindre and A.L. Opdahl, ”Eliciting security requirements with misuse
cases,” Requirements EInternet2neering, Vol. 10, No. 1, pp. 34-44, Jan.2005.
[6] Talukder, Asoke K.; Maurya, Vineet Kumar; Santhosh, Babu G.; Jangam,
Ebenezer; Muni, Sekhar V.; Jevitha, K. P.; Saurabh, Samanta; Pais, Alwyn
Roshan, "Security-aware Software Development Life Cycle (SaSDLC) -
Processes and tools," Wireless and Optical Communications Networks, 2009.
WOCN '09. IFIP International Conference on , vol., no., pp.1-5, 28-30 April
2009.
[7] Wikipedia – the free encyclopedia – www.wikipedia.org.
[8] The Message Passing Interface (MPI) standard
http://www.mcs.anl.gov/research/projects/m i/
[9] The OpenMP API specification for parallel programming
http://openmp.org/wp/ [10] MapReduce: Simplified Data Processing on
Large Clusters http://labs.google.com/papers/mapreduce.html
[11] The Apache Hadoop project develops open-source software for reliable,
scalable, distributed computing - http://hadoop.apache.org/
[12] Cloud development Platform - www.gridgain.com
[13] Phoenix: Open Source On-Premise Cloud Eco system www.
geschickten.com/RD.html
[14] Suraksha: Open Source platform of developing security aware cloud
applications- www.geschickten.com/RD.html
[15] OpenNebula, a Virtual Infrastructure Manager
http://www.opennebula.org/doku.php
[16] Open Source virtual machine-based lease management architecture
http://haizea.cs.uchicago.edu/
[17] ITU-T Recommendation G.1000, Communications quality of service: A
framework and definitions.
[18] RFC3644 - Policy Quality of Service (QoS) Information Model.
[19] Antony Oodan, Keith Ward, Catherine Savolaine, Mahmoud
Daneshmand, Peter Hoath, Telecommunications Quality of Service
Management: From Legacy to Emerging Services, Institution of Electrical
Engineers, 2002.

T.Mahesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1852-1855

1855

